## 素子間相互結合を表すインピーダンス行列の計算方法

## 2009年2月1日

## 平野拓一(東京工業大学)

1. はじめに

電磁界シミュレータの解析結果から素子相互結合を表す等価回路パラメータ、すなわちイ ンピーダンス行列、アドミタンス行列などを計算する方法について説明する。

## 2. モーメント法解析の結果を用いたインピーダンス行列の計算方法



例として図 1 に、2つのダイポールアンテナのモーメント法解析モデルを示す。モーメント法ではデルタギャップ給電を用いるとする。目的はこのダイポールアンテナ系の給電部のZ行列(あるいはY行列)を求めることである。

$$\begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix}$$

$$\begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix}$$
(1)
(2)

ただし、 $Y = Z^{-1}$ の関係がある。 $I_1, I_2$ はそれぞれ $V_1, V_2$ を与えた集中定数的ポートにおける 電流値である。ここで、「集中定数的」というのは、ポートの大きさは波長に比して小さく なければならないという意味である。そうでなければ場所によって電圧および電流が変わ ってしまい、図 3 に示すような集中定数で用いる電圧  $\int_{\Gamma_\ell} \mathbf{E}_t \cdot d\mathbf{l}_\ell = V$ および電流



図 3 集中定数ポートの説明

式(1)、式(2)の Z 行列(Y 行列)の計算のために、図 2 に示すように各素子を順番に励振した 2 つのモデルを考える。励振されない素子は給電部を短絡した導体棒と見なすことができ る。モーメント法のデルタギャップ給電は、給電部に強制的に電界を印加するので、定電 圧源による励振と考えることができる。従って、式(2)のアドミタンス行列による考察が簡 単になる。式(2)を展開すると次式が得られる。

$$\begin{cases} I_1 = Y_{11}V_1 + Y_{12}V_2 \\ I_2 = Y_{21}V_1 + Y_{22}V_2 \end{cases}$$
(3)

従って、各Y行列の要素は次のように計算できる。

$$\begin{cases} Y_{11} = \frac{I_1}{V_1} \Big|_{V_2=0} \\ Y_{12} = \frac{I_1}{V_2} \Big|_{V_1=0} \\ Y_{21} = \frac{I_2}{V_1} \Big|_{V_2=0} \\ Y_{22} = \frac{I_2}{V_2} \Big|_{V_1=0} \end{cases}$$

(4)

 $Y_{11} \ge Y_{21}$ は図 2(a)のモデルで、 $Y_{12} \ge Y_{22}$ は図 2(b)のモデルで計算できる。

3. 計算例

#### 3.1 2素子ダイポールアンテナのインピーダンス行列の計算

図 1 において、 $l_1 = l_2 = \lambda/2$ ,  $a_1 = a_2 = \lambda/1000$ ,  $d = \lambda/2$ としてモーメント法[1] (平野 自作の *Mathematica* プログラム) で計算した。

$$Z_{in} = 84.3 + j34.4$$

そのとき、図 2(a)のダイポール 2 の短絡ポート電流は

 $I_2 = 0.00419 + j \ 0.000837$ 

であった。従って、

$$Y_{11} = Y_{22} = 0.0102 - j0.00415$$

$$Y_{12} = Y_{21} = 0.00419 + j0.000837$$

$$Y = \begin{bmatrix} 0.0102 - j0.00415 & 0.00419 + j0.000837 \\ 0.00419 + j0.000837 & 0.0102 - j0.00415 \end{bmatrix}$$

$$Z = Y^{-1} = \begin{bmatrix} 82.4 + j48.8 & -16.3 - j33.5 \\ -16.3 - j33.5 & 82.4 + j48.8 \end{bmatrix}$$

式(1)より、素子2のポートを開放したときは $I_2 = 0$ なので、

 $V_1 = (82.4 + j48.8)I_1 \Rightarrow Z_{in} = V_1 / I_1 = 82.4 + j48.8$  (下の参考より、素子1のみがある 状況に近い)

式(2)より、素子 2 のポートを短絡したときは $V_2 = 0$ なので  $I_1 = (0.0102 + j0.00415)V_1 \Rightarrow Z_{in} = V_1 / I_1 = 84.1 + j34.4$ 

【参考】

素子1のみがあるときの素子1の入力インピーダンスは $Z_{in} = 82.2 + j47.8$ 

【参考】Ansoft HFSS での計算結果は次のようになる。

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | $\rightarrow$                                                                                                                                               | $\frown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >>>>                                                              | $\times$                                                                       | $\langle$                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\bigotimes$                                                                                                | $\square$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | $\square$                                                                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\searrow$                                                        | $\sim$                                                                         |                           |
| $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\otimes$                                                                                                   | $\searrow$                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | $\leq$                                                                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\ge$                                                                                                       | $\sim$                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\square$                                                         |                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -                                                                                                                                                           | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\otimes$                                                         |                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\searrow$                                                        |                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\succ$                                                           |                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K                                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >>>                                                               | $\langle \langle \langle \rangle$                                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             | $\sim \sim \sim \sim \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   | ~~                                                                             | $\langle \langle \rangle$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sim$                                                            | $\times \times \times$                                                         | X                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                |                           |
| Solution Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ta: two_dipo                                                                                                | les - HFSSMode                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                |                           |
| Solution Da<br>Design Variation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta: two_dipo<br>[0.061' py='                                                                                | les - HFSSMode<br>1.22mm' xx='0.0915' y                                                                                                                     | 211<br>///////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                                                                |                           |
| Solution Da<br>Design Variation:<br>Simulation:<br>Convergence Pri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ta: two_dipo<br>['0.061' py='<br>[Setup1<br>rofile Matrix I                                                 | <mark>les – HFSSMode</mark><br>1.22mm' xx='0.0915' y<br>▼ Last/<br>Data                                                                                     | 211<br>/y='0.0915' zz='0.122'<br>Adaptive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                |                           |
| M Solution Da         Design Variation:         Simulation:         Convergence       Pr         S Matrix         ✓ Y Matrix         ✓ Z Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ta: two_dipo<br> '0.061' py='<br> Setup1<br>rofile Matrix I<br> Gamma<br> Z0                                | Ies - HFSSMode<br>1.22mm' xx='0.0915' y<br>Last/<br>Data<br>Real/Imaginary<br>All Freqs.                                                                    | II       //y='0.0915' zz='0.122'       Adaptive       Image: Comparison of the system o | Export                                                            | Equivalent Circui                                                              | Export                    |
| Solution Da<br>Design Variation:<br>Simulation:<br>Convergence Pr<br>S Matrix<br>V Matrix<br>V Matrix<br>Z Matrix<br>Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ta: two_dipo<br>['0.061' py='<br>Setup1<br>rofile Matrix I<br>Gamma<br>20                                   | Ies - HFSSMode<br>1.22mm' xx='0.0915' y<br>Last/<br>Data<br>Real/Imaginary<br>All Freqs.<br>Y:LumpPort1:1                                                   | .11       /y='0.0915' zz='0.122'       Adaptive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Export                                                            | Equivalent Circuit                                                             | Export                    |
| Image: Solution Date         Design Variation:         Simulation:         Convergence         Prime         S Matrix         Image: Variation:         S Matrix         Image: Variation:         S Matrix         Image: Variation:         Image: Variation:         S Matrix         Image: Variation:         Image: Variation: | ta: two_dipo<br>[0.061' py=<br>Setup1<br>rofile Matrix I<br>Gamma<br>ZO<br>umpPort1:1 (0.<br>umpPort2:1 (0. | Ies - HFSSMode<br>1.22mm' xx='0.0915' y<br>↓ Last/<br>Data<br>Real/Imaginary<br>↓ All Freqs.<br>Y:LumpPort1:1<br>0095731, -0.0050423<br>0040403, 0.00022624 | II         vy='0.0915' zz='0.122'         Adaptive         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>Export<br/>2:LumpPort1:1<br/>(79.887, 56.744)<br/>(-14.495, -33.938)</td> <td>Equivalent Circuit<br/>Z:LumpPort2:1<br/>(-14.495, -33.938)<br/>( 79.938, 57.846)</td> <td>Export</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Export<br>2:LumpPort1:1<br>(79.887, 56.744)<br>(-14.495, -33.938) | Equivalent Circuit<br>Z:LumpPort2:1<br>(-14.495, -33.938)<br>( 79.938, 57.846) | Export                    |

# 3.2 2素子ダイポールアンテナのインピーダンス行列の計算(NEC2 を用いた例) 図 1 において、 $l_1 = l_2 = \lambda/2$ , $a_1 = a_2 = \lambda/1000$ , $d = \lambda/2$ として NEC2[3]で計算した。

## 3.2.1 NEC2 によるインピーダンス行列の解析

【NEC2の入力ファイル】

|                                                  | _ |
|--------------------------------------------------|---|
| CM DIPOLE ANTENNA                                |   |
| CE                                               |   |
| GW 1 13 0 0 -0.0306 0 0 0.0306 .000122           |   |
| GW 2 13 0.0612 0 -0.0306 0.0612 0 0.0306 .000122 |   |
| GE                                               |   |
| FR 0 1 0 0 2450. 100.                            |   |
| EX 0 1 7 1 1.0 0.0                               |   |
| XQ                                               |   |
| RP                                               |   |
| EN                                               |   |

【出力ファイル】

| 1                                                                     |                |                           |                           |                 |            |       |       |
|-----------------------------------------------------------------------|----------------|---------------------------|---------------------------|-----------------|------------|-------|-------|
|                                                                       | ********       | *****                     | *****                     | *****           |            |       |       |
|                                                                       | NUMEF          | RICAL ELEC'               | FROMAGNE                  | TICS CODI       | E (NEC-2D) |       |       |
|                                                                       | ********       | ******                    | ******                    | ******          |            |       |       |
|                                                                       |                |                           |                           |                 |            |       |       |
|                                                                       | C              | OMMENTS -                 |                           |                 |            |       |       |
|                                                                       | 0              |                           |                           |                 |            |       |       |
| DIPO                                                                  | OLE ANTENN     | A                         |                           |                 |            |       |       |
|                                                                       |                |                           |                           |                 |            |       |       |
|                                                                       |                |                           |                           |                 |            |       |       |
|                                                                       | STRUC          | TURE SPEC                 | IFICATION                 |                 |            |       |       |
|                                                                       | COORI<br>METEI | DINATES MU<br>RS OR BE SC | JST BE INPU<br>CALED TO M | UT IN<br>IETERS |            |       |       |
|                                                                       | BEFOR          | RE STRUCTU                | JRE INPUT                 | IS ENDED        |            |       |       |
| WIRE                                                                  |                |                           |                           |                 | N          | O. OF | FIRST |
| LAST TAG<br>NO. X1 Y1                                                 | $\mathbf{Z1}$  | X2                        | Y2                        | Z2              | RADIUS     | SEG.  | SEG.  |
| SEG. NO.<br>1 0.00000 0.00000                                         | -0.03060       | 0.00000                   | 0.00000                   | 0.03060         | 0.00012    | 13    | 1     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                  | -0.03060       | 0.06120                   | 0.00000                   | 0.03060         | 0.00012    | 13    | 14    |
| TOTAL SEGMENTS USED= 26 NO SEG IN A SYMMETRIC CELL= 26 SYMMETRY FLAG= |                |                           |                           |                 |            |       |       |
| 0                                                                     |                |                           |                           |                 |            |       |       |
| - MULTIPLE WIRE JUNCTIONS -                                           |                |                           |                           |                 |            |       |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NONE                                                       | NONE                                                          |                     |                    |                    |            |         |           |                     |          |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|---------------------|--------------------|--------------------|------------|---------|-----------|---------------------|----------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| COORDINATES IN METERS         FAND 1 FINDLCATE THE SEGMENTS BEFORE AND AFTER I         SEG       ORIENTATION ANGLES       WIRE         NO       X       X       X       NO       X       X       NO       X       X       NO       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       <th colspan="</td> <td></td> <td></td> <td></td> <td>8</td> <td>EGMENT</td> <td>ATION DAT</td> <td>'A</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                               |                     | 8                  | EGMENT             | ATION DAT  | 'A      |           |                     |          |        |
| IF AND 1-INDICATE THE SEGMENTS BEFORE AND AFTER I         SEG. ORIENTATION ANGLES WIRE<br>CONNECTION DATA TAG       V       Z       LENGTH       ALPHA       BETA       RADIUS       I       I       I         NO.       X       Y       Z       LENGTH       ALPHA       BETA       RADIUS       I       1       1       2       1       1       1       1       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td></td> <td></td> <td></td> <td>~</td> <td>COORDI</td> <td>NATES IN P</td> <td>METERS</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                               |                     | ~                  | COORDI             | NATES IN P | METERS  |           |                     |          |        |
| SEG. COORDINATES OF SEG. CENTER       SEG. ORIENTATION ANGLES       WIRE         CONNECTION DATA TAG       NO.       X       Y       Z       LENGTH       ALPHA       BETA       RADUS       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                               | Τ±                  | AND I- IND         | ICATE TH           | E SECMEN   | TS BEEO | DE AND AI | етер і              |          |        |
| SEG         COORDINATES         OF         SEG         ORIENTATION ANGLES         WIRE           NO.         X         Y         Z         LENGTH         ALPHA         BETA         RADIUS         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                               | 1+.                 | AND I IND          | IOALE III.         | E SEGMEN   | IS BEFO | ILL AND A | F I ER I            |          |        |
| CONNECTION FING         X         Y         Z         LENGTH         ALPHA         BETA         RADIUS         I         I         I           NO.         X         Y         Z         LENGTH         ALPHA         BETA         RADIUS         I         2         1           1         0.00000         0.00000         0.00000         0.00012         1         2         1           3         0.00000         0.00000         0.00000         0.00012         2         3         4         1           4         0.00000         0.00000         0.00000         0.00012         3         4         5         1           5         0.00000         0.00000         0.00010         0.00012         4         5         6         1           7         0.00000         0.00000         0.00000         0.00012         7         8         9         1           10         0.00000         0.00000         0.00000         0.00000         0.00012         1         1         1         1           11         0.00000         0.00000         0.00000         0.00001         0.00012         1         1         1         1         1 <td>SEG.</td> <td>COOR</td> <td>DINATES</td> <td>OF SEG.</td> <td>CENTER</td> <td>SEC</td> <td>Э.</td> <td>ORIENTA'</td> <td>TION ANGL</td> <td>es v</td> <td>WIRE</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SEG.                                                       | COOR                                                          | DINATES             | OF SEG.            | CENTER             | SEC        | Э.      | ORIENTA'  | TION ANGL           | es v     | WIRE   |
| NO.<br>1 0.00000 0.00000 -0.02825 0.00471 90.00000 0.00012 0 1 2 1 2<br>3 0.00000 0.00000 -0.02854 0.00471 90.00000 0.00012 2 3 4 5 1<br>5 0.00000 0.00000 -0.00471 0.00471 90.00000 0.00001 2 4 5 6 6 7 1<br>7 0.00000 0.00000 0.00471 90.00000 0.00000 0.00012 4 5 6 6 7 1<br>9 0.00000 0.00000 0.00471 90.00000 0.00000 0.00012 6 7 8 9 1<br>9 0.00000 0.00000 0.00471 90.00000 0.00000 0.00012 8 9 10 11<br>11 0.00000 0.00000 0.00471 90.00000 0.00000 0.00012 8 9 10 11<br>11 0.00000 0.00000 0.00471 90.00000 0.00000 0.00012 8 9 10 11<br>12 0.00000 0.00000 0.01883 0.0471 90.00000 0.00000 0.00012 8 9 10 11<br>11 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 11 2 13<br>13 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 10 11 12 13<br>14 0.06120 0.00000 -0.02825 0.00471 90.00000 0.00000 0.00012 10 11 15 2<br>15 0.06120 0.00000 -0.02825 0.00471 90.00000 0.00000 0.00012 11 11 5 6 2<br>16 0.06120 0.00000 -0.02825 0.00471 90.00000 0.00000 0.00012 11 11 5 6 2<br>16 0.06120 0.00000 -0.0471 90.00000 0.00000 0.00012 10 14 5 2<br>18 0.06120 0.00000 -0.0471 90.00000 0.00000 0.00012 11 18 19 2<br>20 0.06120 0.00000 -0.00471 90.00000 0.00000 0.00012 11 18 19 2<br>21 0.06120 0.00000 -0.00471 90.00000 0.00000 0.00012 11 18 19 2<br>22 0.06120 0.00000 -0.00471 90.00000 0.00000 0.00012 12 18 19 20 1 2<br>23 0.06120 0.00000 0.00471 90.00000 0.00000 0.00012 12 12 12 2 23 2<br>24 0.06120 0.00000 0.00471 90.00000 0.00000 0.00012 12 12 22 3 24 25<br>24 0.06120 0.00000 0.00471 90.00000 0.00000 0.00012 12 22 23 24 25<br>24 0.06120 0.00000 0.01483 0.0471 90.00000 0.00000 0.00012 12 22 23 24 25<br>24 0.06120 0.00000 0.01883 0.0471 90.00000 0.00000 0.00012 12 3 24 25 2<br>24 0.06120 0.00000 0.01883 0.0471 90.00000 0.00000 0.00012 12 3 24 25 2<br>25 0.06120 0.000000 0.01883 0.0471 90.00000 0.00000 0.00012 23 24 25 2<br>24 0.06120 0.000000 0.02825 0.0471 90.00000 0.000000 0.00012 23 24 25 2<br>25 0.06120 0.000000 0.02825 0.0471 90.00000 0.000000 0.00012 24 25 26 0 2<br>****** DATA CARD NO. 3 XQ 0 0 0 0 0 0.000000 0.00012 25 26 0 2<br>***** DATA CARD NO. 3 XQ 0 0 0 0 0 0.000000 0.000012 25 26 | NO.                                                        | X                                                             | Y                   | Z                  | LENG               | GTH A      | LPHA    | BETA      | RADIUS              | I- I     | I+     |
| <pre>***** DATA CARD NO. 1 FR 0 1 0 00000 0.0000 0.00012 1 2 3 4 1 1 0.00000 0.00000 0.00000 0.00012 1 3 4 5 1 1 0.00000 0.00000 0.00000 0.00012 1 0 3 4 5 1 1 0 0.00000 0.00000 0.00011 0.00000 0.00000 0.00012 1 5 6 7 1 1 0 0.00000 0.00000 0.00011 0.00471 90.00000 0.00000 0.00012 5 6 7 8 1 1 0 0.00000 0.00000 0.00471 0.00471 90.00000 0.00000 0.00012 7 8 9 10 1 0 0.00000 0.00000 0.00471 0.00471 90.00000 0.00000 0.00012 8 9 10 1 1 0 0.00000 0.00000 0.00471 0.00471 90.00000 0.00000 0.00012 8 9 10 1 1 1 0.00000 0.00000 0.01422 0.00471 90.00000 0.00000 0.00012 8 9 10 1 1 1 0.00000 0.00000 0.01483 0.00471 90.00000 0.00000 0.00012 10 12 13 1 1 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 12 3 1 1 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 12 3 1 1 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 13 12 1 1 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 18 19 2 1 5 0.06120 0.00000 0.01883 0.00471 90.00000 0.00000 0.00012 14 15 16 17 2 1 6 0.06120 0.00000 0.01883 0.00471 90.00000 0.00000 0.00012 14 15 16 17 2 1 7 0.06120 0.00000 0.00412 0.00471 90.00000 0.00000 0.00012 18 19 20 21 2 2 2 0 0.06120 0.00000 0.00412 0.00471 90.00000 0.00000 0.00012 18 19 2 2 2 2 0 0.06120 0.00000 0.00412 0.00471 90.00000 0.00000 0.00012 12 12 22 2 2 2 0.06120 0.00000 0.000412 0.00471 90.00000 0.00000 0.00012 12 12 22 2 2 2 0.06120 0.00000 0.000412 0.00471 90.00000 0.00000 0.00012 12 12 22 2 2 2 0.06120 0.00000 0.000412 0.00471 90.00000 0.00000 0.00012 12 12 22 2 2 2 0.06120 0.00000 0.00001 0.00000 0.00000 0.00012 12 22 2 2 2 2 0.06120 0.00000 0.000412 0.00471 90.00000 0.00000 0.00012 12 22 2 2 2 2 0.06120 0.00000 0.00042 0.00471 90.00000 0.00000 0.00012 12 22 2 2 2 0.06120 0.00000 0.00042 0.00471 90.00000 0.00000 0.00012 12 22 2 2 2 0.06120 0.00000 0.00042 0.00471 90.00000 0.00000 0.00012 12 22 2 2 2 0.06120 0.00000 0.00042 0.00471 90.00000 0.00000 0.00012 12 22 2 2 2 0.06120 0.00000 0.00285 0.00471 90.00000 0.00000 0.00012 23 24 25 2 2 2 0.06120 0.000000 0.00285 0.00471 90.00000 0.00000</pre>                                                      | NO.<br>1                                                   | 0.00000                                                       | 0.00000             | -0.02825           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 0 1                 | 2 1      | L      |
| ******       DATA       CARDON       0.00000       0.000012       2       3       4       1         4       0.00000       0.00000       0.00171       90.00000       0.000012       3       4       5       6       1         5       0.00000       0.00000       0.00001       0.00010       0.00000       0.000012       5       6       7       8       1         7       0.00000       0.00000       0.00011       90.00000       0.000012       8       9       10       1         1       0.00000       0.00000       0.00112       0.00112       10       11       11       11       11       11       11       11       11       11       11       11       11       12       13       11       11       11       12       13       11       12       13       11       11       11       11       11       11       11       11       12       13       11       11       12       13       11       13       11       13       11       13       14       15       15       16       17       18       16       16       17       18       16       16 <t< td=""><td>2</td><td>0.00000</td><td>0.00000</td><td>-0.02354</td><td>0.00471</td><td>90.00000</td><td>0.00000</td><td>0.00012</td><td>1 2</td><td>3 1</td><td>L</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                          | 0.00000                                                       | 0.00000             | -0.02354           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 1 2                 | 3 1      | L      |
| ****** DATA CARD NO. 1 FR 0 1 0.00000 0.00000 0.00012 13 4 5 6 1<br>6 0.00000 0.00000 0.00471 0.00471 90.00000 0.000012 4 5 6 7 1<br>7 0.00000 0.00000 0.00471 90.00000 0.00001 0.00012 7 8 9 1<br>9 0.00000 0.00000 0.00471 90.00000 0.00001 0.00012 7 8 9 10 1<br>10 0.00000 0.00000 0.01412 0.00471 90.00000 0.00000 0.00012 9 10 11 1<br>11 0.00000 0.00000 0.01432 0.00471 90.00000 0.00000 0.00012 19 10 11 1<br>11 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 10 11 12 13 1<br>13 0.00000 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 11 2 13 1<br>14 0.06120 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 11 11 2 13 0<br>14 0.06120 0.00000 0.02825 0.00471 90.00000 0.00000 0.00012 14 15 16 2<br>15 0.06120 0.00000 0.02845 0.00471 90.00000 0.00000 0.00012 14 15 16 2<br>16 0.06120 0.00000 0.01412 0.00471 90.00000 0.00000 0.00012 16 17 18 2<br>18 0.06120 0.00000 0.00471 90.00000 0.00000 0.000012 16 17 18 2<br>18 0.06120 0.00000 0.00471 90.00000 0.00000 0.000012 19 20 2<br>20 0.06120 0.00000 0.00471 90.00000 0.00000 0.000012 19 20 21 2<br>22 0.06120 0.00000 0.00471 90.00000 0.00000 0.00012 19 20 2<br>22 0.06120 0.00000 0.00471 0.00471 90.00000 0.00000 0.00012 19 20 2<br>22 0.06120 0.00000 0.00471 0.00471 90.00000 0.00001 0.00012 19 20 2<br>22 0.06120 0.00000 0.00471 0.00471 90.00000 0.00001 0.00012 19 20 2<br>22 0.06120 0.00000 0.00471 0.00471 90.00000 0.00001 0.00012 19 20 2<br>23 0.06120 0.00000 0.00842 0.00471 90.00000 0.00001 0.00012 19 20 2<br>24 0.06120 0.00000 0.00842 0.00471 90.00000 0.00000 0.00012 12 22 33 4 25<br>25 0.06120 0.00000 0.01883 0.00471 90.00000 0.00001 0.00012 12 22 23 4 25<br>25 0.06120 0.00000 0.02855 0.00471 90.00000 0.00001 0.00012 24 25 26 0 2<br>5 0.06120 0.000000 0.02855 0.00471 90.00000 0.00000 0.00012 24 25 26 0 2<br>5 0.06120 0.000000 0.02855 0.00471 90.00000 0.00000 0.00012 24 25 26 0 2<br>5 0.06120 0.000000 0.02855 0.00471 90.00000 0.00000 0.000012 24 25 26 0 2<br>5 0.06120 0.000000 0.02855 0.00471 90.00000 0.000000 0.000012 24 25 26 0 2<br>5 0.06120 0.000000 0.02855 0.00471 90.00000 0.0000012 24 25 26 0 2<br>5 0.06120 0.000000 0     | 3                                                          | 0.00000                                                       | 0.00000             | -0.01883           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 2 3                 | 4 1      | l      |
| ******       DATA CARD NO.       1       FR       0       1       0.00000       0.00000       0.000012       5       6       7       1         *****       DATA CARD NO.       1.00000       0.00000       0.00000       0.00000       0.000012       7       8       9       10         10       0.00000       0.00000       0.00471       90.00000       0.000012       7       8       9       10       1         11       0.00000       0.00000       0.00121       0       11       12       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>4</td><td>0.00000</td><td>0.00000</td><td>-0.01412</td><td>0.00471</td><td>90.00000</td><td>0.00000</td><td>0.00012</td><td>3 4</td><td>5</td><td>L</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                          | 0.00000                                                       | 0.00000             | -0.01412           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 3 4                 | 5        | L      |
| ****** DATA CARD NO. 1       FR       0       1       0       0       2.4500000       0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>6                                                     | 0.00000                                                       | 0.00000             | -0.00942           | 0.00471<br>0.00471 | 90.00000   | 0.00000 | 0.00012   | 4 D<br>5 G          | 7 1      | L<br>1 |
| ****** DATA CARD NO. 1 FR 0 1 0.0471       0.00000       0.00000       0.00002       1.000002       1.000002       1.000002       1.000002       1.000002       1.1       1.1         10       0.00000       0.00000       0.01412       0.00471       90.00000       0.00012       8       9       1.0       1.1         11       0.00000       0.00000       0.01412       0.00471       90.00000       0.00012       10       11       12         12       0.00000       0.00000       0.02825       0.00471       90.00000       0.00012       14       15       2         15       0.06120       0.00000       -0.02825       0.00471       90.00000       0.00012       14       15       2         16       0.06120       0.00000       -0.02844       0.00471       90.00000       0.00012       16       17       18       2         17       0.06120       0.00000       -0.00471       90.00000       0.00012       18       19       20       2       2       2       0.06120       0.00000       0.00471       90.00000       0.00012       18       19       20       2       2       2       2       2       0.06120       0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                          | 0.00000                                                       | 0.00000             | 0.00000            | 0.00471            | 90.00000   | 0.00000 | 0.00012   |                     | 8        | 1      |
| 9       0.00000       0.00000       0.00000       0.00000       0.00000       0.0012       8       9       10       1         10       0.00000       0.00000       0.01412       0.00471       90.00000       0.00001       11       12         11       0.00000       0.00000       0.02354       0.00471       90.00000       0.00012       10       11       12       13       1         13       0.00000       0.02354       0.00471       90.00000       0.00012       0       14       15       2         14       0.06120       0.00000       -0.02354       0.00471       90.00000       0.00012       0       14       15       2         15       0.06120       0.00000       -0.02354       0.00471       90.00000       0.00012       16       17       18       16       17       18       16       17       18       19       20       2       2       2       0.06120       0.0000       -0.00471       90.0000       0.00012       19       20       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                          | 0.00000                                                       | 0.00000             | 0.00471            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | $\overline{7}$ 8    | 9        | 1      |
| 10       0.00000       0.00000       0.01412       0.00471       90.00000       0.000012       10       11       1         11       0.00000       0.00000       0.02354       0.00471       90.00000       0.00012       10       11       12       13       1         13       0.00000       0.00000       0.02354       0.00471       90.00000       0.00012       10       11       12       13       0       1         14       0.06120       0.00000       0.02354       0.00471       90.00000       0.00012       14       15       16       17       2         15       0.6120       0.00000       -0.02354       0.00471       90.00000       0.00012       16       17       18       2         16       0.06120       0.00000       -0.01412       0.00471       90.00000       0.00012       18       19       20       2         19       0.06120       0.00000       -0.00471       90.00000       0.00001       200       12       22       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <td< td=""><td>9</td><td>0.00000</td><td>0.00000</td><td>0.00942</td><td>0.00471</td><td>90.00000</td><td>0.00000</td><td>0.00012</td><td>8 9</td><td>10</td><td>1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                          | 0.00000                                                       | 0.00000             | 0.00942            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 8 9                 | 10       | 1      |
| <pre>***** DATA CARD NO. 1 FR 0 1 0 2.45000E+03 1.00000E+00 0.0000E+00 0.0000E+00 0.0000E 0.02825 0.00471 90.0000 0.0000E+03 1.0000E+02 0.00000E+00 0.00000 0.02825 0.00471 90.0000 0.00000 0.00012 11 12 13 0 11 14 0.06120 0.0000 -0.02825 0.00471 90.0000 0.00000 0.00012 10 14 15 16 2 16 0.06120 0.0000 -0.01833 0.00471 90.0000 0.00000 0.00012 15 16 17 2 17 0.06120 0.0000 -0.01412 0.00471 90.0000 0.00000 0.00012 16 17 18 19 2 2 19 0.06120 0.0000 -0.00471 0.00471 90.0000 0.00000 0.00012 18 19 20 2 20 0.06120 0.0000 0.00471 90.0000 0.00000 0.00012 18 19 20 2 21 0.06120 0.0000 0.00471 90.0000 0.00000 0.00012 18 19 20 2 22 0.06120 0.00000 0.00471 90.0000 0.00000 0.00012 18 19 20 2 23 0.06120 0.00000 0.00471 90.0000 0.00000 0.00012 12 22 23 2 24 0.06120 0.00000 0.00471 90.0000 0.00000 0.00012 21 22 23 2 23 0.06120 0.00000 0.00471 90.0000 0.00000 0.00012 21 22 23 2 24 0.06120 0.00000 0.01412 0.00471 90.00000 0.00000 0.00012 21 22 23 2 24 0.06120 0.00000 0.01412 0.00471 90.00000 0.00000 0.00012 22 24 25 2 25 0.06120 0.00000 0.01412 0.00471 90.00000 0.00000 0.00012 21 22 23 24 24 0.06120 0.00000 0.01412 0.00471 90.00000 0.00000 0.00012 22 24 25 2 26 0.06120 0.00000 0.02825 0.00471 90.00000 0.00001 220 21 22 23 24 25 0.06120 0.00000 0.02825 0.00471 90.00000 0.00001 225 26 0 2 26 0.06120 0.00000 0.02825 0.00471 90.00000 0.00001 225 26 0 2 26 0.06120 0.00000 0.02825 0.00471 90.00000 0.00001 225 26 0 2 26 0.06120 0.00000 0.02825 0.00471 90.00000 0.00001 225 26 0 2 26 0.06120 0.00000 E+00 0.00000E+00 0.00000E+</pre>                                                      | 10                                                         | 0.00000                                                       | 0.00000             | 0.01412            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 9 10                | 11       | 1      |
| 11       2       0.00000       0.00234       0.00471       90.00000       0.00012       11       12       13       1         13       0.00000       0.00225       0.00471       90.00000       0.00012       14       15       2         15       0.06120       0.00000       -0.02354       0.00471       90.00000       0.00000       0.0012       14       15       2         16       0.06120       0.00000       -0.0183       0.00471       90.00000       0.00000       0.0012       16       17       18       19       2         19       0.06120       0.00000       -0.00471       90.00000       0.00000       0.00012       18       19       20       2         20       0.06120       0.00000       0.00471       90.00000       0.000012       21       22       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <t< td=""><td>11</td><td>0.00000</td><td>0.00000</td><td>0.01883</td><td>0.00471</td><td>90.00000</td><td>0.00000</td><td>0.00012</td><td>10 11</td><td>12</td><td>1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                         | 0.00000                                                       | 0.00000             | 0.01883            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 10 11               | 12       | 1      |
| 14       0.00000       0.00225       0.00471       90.00000       0.000012       12       13       0       1         14       0.06120       0.00000       -0.02354       0.00471       90.00000       0.00000       0.00012       14       15       2         15       0.06120       0.00000       -0.0183       0.00471       90.00000       0.00000       0.0012       16       17       2         17       0.06120       0.00000       -0.0183       0.00471       90.00000       0.00000       0.0012       16       17       18       2         19       0.06120       0.00000       -0.00471       90.00000       0.00000       0.0012       18       19       2         20       0.06120       0.00000       -0.00471       90.00000       0.00012       21       22       2         21       0.06120       0.00000       0.00471       90.00000       0.000012       21       22       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 </td <td>12</td> <td>0.00000</td> <td>0.00000</td> <td>0.02354</td> <td>0.00471</td> <td>90.00000</td> <td>0.00000</td> <td>0.00012</td> <td>11 12</td> <td>13</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                         | 0.00000                                                       | 0.00000             | 0.02354            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 11 12               | 13       | 1      |
| ******       DATA       CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                         | 0.00000                                                       | 0.00000             | 0.02825            | 0.00471<br>0.00471 | 90.00000   | 0.00000 | 0.00012   | 12 	13 	0 	14       | 15       | 1<br>9 |
| 16       0.06120       0.00000       -0.01883       0.00471       90.00000       0.000012       15       16       17       2         17       0.06120       0.00000       -0.01412       0.00471       90.00000       0.00012       16       17       18       19         18       0.06120       0.00000       -0.00471       90.0000       0.00000       0.00012       18       19       20       2         20       0.06120       0.00000       0.00471       90.0000       0.00000       0.00012       18       19       20       2         21       0.06120       0.00000       0.00471       90.0000       0.00000       0.00012       20       21       22       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <t< td=""><td>15</td><td>0.00120<br/>0.06120</td><td>0.00000</td><td>-0.02354</td><td>0.00471<br/>0.00471</td><td>90.00000</td><td>0.00000</td><td>0.00012</td><td>14 	 15</td><td>16</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                         | 0.00120<br>0.06120                                            | 0.00000             | -0.02354           | 0.00471<br>0.00471 | 90.00000   | 0.00000 | 0.00012   | 14 	 15             | 16       | 2      |
| 17       0.06120       0.00000       -0.01412       0.00471       90.00000       0.000012       16       17       18       19         18       0.06120       0.00000       -0.00471       90.00000       0.000012       18       19       22         20       0.06120       0.00000       0.00471       90.00000       0.00012       18       19       20       21       2         21       0.06120       0.00000       0.00471       90.00000       0.00012       20       21       2       2         21       0.06120       0.00000       0.00471       90.00000       0.000012       20       21       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                         | 0.06120                                                       | 0.00000             | -0.01883           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 15 16               | 17       | 2      |
| 18       0.06120       0.00000       0.00471       90.00000       0.000012       17       18       19       2         20       0.06120       0.00000       0.00471       90.00000       0.000012       18       19       20       2         21       0.06120       0.00000       0.00471       90.00000       0.000012       20       21       22       2         22       0.06120       0.00000       0.00471       90.00000       0.000012       20       21       22       2         23       0.06120       0.00000       0.00471       90.00000       0.000012       21       22       23       24       2         24       0.06120       0.00000       0.01471       90.00000       0.00000       0.00012       21       22       23       24       2         25       0.06120       0.00000       0.01471       90.00000       0.00000       0.00012       24       25       26       2         26       0.06120       0.00000       0.02354       0.0471       90.0000       0.000012       25       26       0       2         26       0.06120       0.00000E+00       0.00000E+00       0.00000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                         | 0.06120                                                       | 0.00000             | -0.01412           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 16 17               | 18       | 2      |
| 19       0.06120       0.00000       -0.00471       90.00000       0.00000       0.00012       18       19       20       2         21       0.06120       0.00000       0.00001       0.00012       18       19       20       21       2         22       0.06120       0.00000       0.00471       90.00000       0.000012       21       22       2         22       0.06120       0.00000       0.00471       90.00000       0.00000       0.00012       21       22       2         23       0.06120       0.00000       0.01412       0.00471       90.00000       0.00012       21       22       23       24       2         24       0.06120       0.00000       0.01412       0.00471       90.00000       0.00012       23       24       25       2         25       0.66120       0.00000       0.02354       0.00471       90.0000       0.000012       24       25       26       2         26       0.06120       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.000000E+00       0.00000E+00       0.00000E+00 <td>18</td> <td>0.06120</td> <td>0.00000</td> <td>-0.00942</td> <td>0.00471</td> <td>90.00000</td> <td>0.00000</td> <td>0.00012</td> <td>17 18</td> <td>19</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                         | 0.06120                                                       | 0.00000             | -0.00942           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 17 18               | 19       | 2      |
| 20       0.06120       0.00000       0.00471       0.00000       0.00000       0.00012       21       22       2         22       0.06120       0.00000       0.00471       90.00000       0.00000       0.00012       21       22       2         23       0.06120       0.00000       0.01412       0.00471       90.00000       0.00000       0.00012       21       22       23       2         23       0.06120       0.00000       0.01412       0.00471       90.00000       0.00000       0.00012       21       22       23       2         24       0.06120       0.00000       0.01413       90.00000       0.00000       0.00012       23       24       25       2         25       0.06120       0.00000       0.02354       0.00471       90.00000       0.00012       24       25       26       2         26       0.06120       0.000000       0.02355       0.00471       90.00000       0.000012       24       25       26       0       2         *****       DATA       CARD       NO.       1       FR       0       1       0       0       2.45000E+03       1.00000E+00       0.00000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                         | 0.06120                                                       | 0.00000             | -0.00471           | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 18 19               | 20       | 2      |
| 21       0.00120       0.00000       0.00471       90.00000       0.00012       20       1       22       2         23       0.06120       0.00000       0.01412       0.00471       90.00000       0.00012       22       23       24       2         24       0.06120       0.00000       0.01412       0.00471       90.00000       0.000012       23       24       2         25       0.06120       0.00000       0.02354       0.00471       90.00000       0.00000       0.00012       23       24       25       26         26       0.06120       0.00000       0.02354       0.00471       90.00000       0.00000       0.00012       24       25       26       2         26       0.06120       0.00000       0.02825       0.00471       90.00000       0.000012       25       26       0       2         26       0.6120       0.00000E+00       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                         | 0.06120                                                       | 0.00000             | 0.00000            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 19 20               | 21       | 2      |
| 22       0.06120       0.00000       0.01412       0.00471       90.00000       0.00001       22       22       22       24       2         24       0.06120       0.00000       0.01483       0.00471       90.00000       0.00000       0.00012       22       23       24       25       2         25       0.06120       0.00000       0.02354       0.00471       90.0000       0.00000       0.00012       24       25       26       2         26       0.06120       0.00000       0.02354       0.00471       90.0000       0.00000       0.00012       24       25       26       2         26       0.06120       0.00000       0.02825       0.00471       90.0000       0.000012       25       26       0       2         26       0.06120       0.00000E+00       0.00000E+00       0.00000E+00       1       7       1       1.00000E+02       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0       0       0       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00 <td>21</td> <td>0.06120<br/>0.06120</td> <td>0.00000</td> <td>0.00471<br/>0.00942</td> <td>0.00471<br/>0.00471</td> <td>90.00000</td> <td>0.00000</td> <td>0.00012</td> <td><math>20 \ 21 \ 21 \ 22</math></td> <td>22<br/>23</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                         | 0.06120<br>0.06120                                            | 0.00000             | 0.00471<br>0.00942 | 0.00471<br>0.00471 | 90.00000   | 0.00000 | 0.00012   | $20 \ 21 \ 21 \ 22$ | 22<br>23 | 2      |
| 24       0.06120       0.00000       0.01883       0.00471       90.0000       0.00000       0.00012       23       24       25       2         25       0.06120       0.00000       0.02354       0.00471       90.0000       0.00000       0.00012       24       25       26       2         26       0.06120       0.00000       0.02825       0.00471       90.0000       0.00000       0.00012       24       25       26       0       2         *****       DATA CARD NO.       1       FR       0       1       0       0       2.45000E+03       1.00000E+02       0.00000E+00         *****       DATA CARD NO.       2       EX       0       1       7       1       1.00000E+00       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0       0       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                         | 0.06120                                                       | 0.00000             | 0.00342<br>0.01412 | 0.00471<br>0.00471 | 90.00000   | 0.00000 | 0.00012   | 21 22 23            | 23<br>24 | 2      |
| 25       0.06120       0.00000       0.02354       0.00471       90.00000       0.00000       0.0012       24       25       26       2         26       0.06120       0.00000       0.02825       0.00471       90.00000       0.00000       0.00012       25       26       0       2         ***** DATA CARD NO. 1 FR 0 1 0 0 2.45000E+03 1.00000E+02 0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00         ***** DATA CARD NO. 2 EX 0 1 7 1 1.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0 0 0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0 0 0 0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00         0.00000E+00 0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00         0.00000E+00 0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00       0.00000E+00 <t< td=""><td>24</td><td>0.06120</td><td>0.00000</td><td>0.01883</td><td>0.00471</td><td>90.00000</td><td>0.00000</td><td>0.00012</td><td>23  24</td><td>25</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                         | 0.06120                                                       | 0.00000             | 0.01883            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 23  24              | 25       | 2      |
| 26       0.06120       0.00000       0.02825       0.00471       90.00000       0.00002       0.0012       25       26       0       2         ***** DATA CARD NO. 1       FR       0       1       0       0       2.45000E+03       1.00000E+02       0.00000E+00         ***** DATA CARD NO. 2       EX       0       1       7       1       1.00000E+00       0.00000E+00       0.0000E+00       0.0000E+00       0.0000E+00       0.0000E+00       0.0000E+00       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                         | 0.06120                                                       | 0.00000             | 0.02354            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 24  25              | 26       | 2      |
| ***** DATA CARD NO. 1 FR 0 1 0 0 2.45000E+03 1.00000E+02 0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00         ***** DATA CARD NO. 2 EX 0 1 7 1 1.00000E+00 0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0 0.00000E+00 0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0 0.00000E+00 0.00000E+00         0.00000E+00 0.00000E+00         ***** FREQUENCY=2.4500E+03 MHZ         WAVELENGTH= 1.2237E-01 METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                         | 0.06120                                                       | 0.00000             | 0.02825            | 0.00471            | 90.00000   | 0.00000 | 0.00012   | 25 26               | 0        | 2      |
| ***** DATA CARD NO. 1 FR 0 1 0 0 2.45000E+03 1.00000E+02 0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00         ***** DATA CARD NO. 2 EX 0 1 7 1 1.00000E+00 0.00000E+00         0.00000E+00 0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0.00000E+00 0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0.00000E+00 0.00000E+00 0.00000E+00         0.00000E+00 0.00000E+00 0.00000E+00         ***** FREQUENCY=2.4500E+03 MHZ         WAVELENGTH= 1.2237E-01 METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| ***** DATA CARD NO. 1 FR 0 1 0 0 2.45000E+03 1.00000E+02 0.00000E+00<br>0.00000E+00 0.00000E+00 1 7 1 1.00000E+00 0.00000E+00<br>0.00000E+00 0.00000E+00 0.00000E+00<br>***** DATA CARD NO. 3 XQ 0 0 0 0 0 0.00000E+00 0.00000E+00<br>0.00000E+00 0.00000E+00 0.00000E+00<br>FREQUENCY<br>FREQUENCY= 2.4500E+03 MHZ<br>WAVELENGTH= 1.2237E-01 METERS<br>APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| ***** DATA CARD NO.       1       FR       0       1       0       0       2.45000E+03       1.00000E+02       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       1       7       1       1.00000E+00       0.00000E+00         ***** DATA CARD NO.       2       EX       0       1       7       1       1.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0       0       0.00000E+00       0.00000E+00         ***** DATA CARD NO.       3       XQ       0       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0       0.00000E+00       0.00000E+00         0.00000E+00       0.00000E+00       0.00000E+00       0       0.00000E+00       0.00000E+00       0.00000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| ***** DATA CARD NO. 2 EX 0 1 7 1 1.00000E+00 0.00000E+00 0.00000E+00       0.00000E+00 0.00000E+00 0.00000E+00       0.00000E+00 0.00000E+00 0.00000E+00         ***** DATA CARD NO. 3 XQ 0 0 0 0 0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00       0.00000E+00 0.00000E+00       0.00000E+00 0.00000E+00         ***** FREQUENCY       FREQUENCY= 2.4500E+03 MHZ WAVELENGTH= 1.2237E-01 METERS       MARE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 ***** I                                                  | DATA CAR $E+00$ 0.00                                          | D NO.               | 1 FR<br>0.00000E+0 | 0 1                | 0          | 0 2.45  | 000E+03   | 1.00000E+02         | 0.00000  | E+00   |
| 0.00000E+00       0.0000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***** I                                                    | DATA CAR                                                      | D NO.               | 2 EX               | 0 1                | 7          | 1 1.00  | 000E+00   | 0.00000E+00         | 0.00000  | E+00   |
| 0.00000E+00 0.00000E+00<br>FREQUENCY<br>FREQUENCY= 2.4500E+03 MHZ<br>WAVELENGTH= 1.2237E-01 METERS<br>APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000001<br>***** I                                        | £+00 0.00<br>DATA CAR                                         | 000E+00<br>2D NO. 3 | 0.00000E+0<br>3 XQ | 0 0                | 0          | 0 0.00  | 000E+00   | 0.00000E+00         | 0.00000  | E+00   |
| FREQUENCY= 2.4500E+03 MHZ<br>WAVELENGTH= 1.2237E-01 METERS<br>APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000001                                                   | E+00 0.00                                                     | 000E+00             | 0.00000E+0         | 00                 |            |         |           |                     |          |        |
| FREQUENCY = 2.4500E+03 MHZ<br>FREQUENCY = 2.4500E+03 MHZ<br>WAVELENGTH = 1.2237E-01 METERS<br>APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| FREQUENCY= 2.4500E+03 MHZ<br>WAVELENGTH= 1.2237E-01 METERS<br>APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                               |                     |                    | EDEOLIE            | NICI       |         |           |                     |          |        |
| FREQUENCY= 2.4500E+03 MHZ<br>WAVELENGTH= 1.2237E-01 METERS<br>APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                               |                     |                    | - FREQUE           | Y          |         |           |                     |          |        |
| APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FREQUENCY= 2.4500E+03 MHZ<br>WAVELENGTH= 1.2237E-01 METERS |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
| APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                               |                     |                    |                    |            |         |           |                     |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | APPROXIMATE INTEGRATION EMPLOYED FOR SEGMENTS MORE THAN 1.000 |                     |                    |                    |            |         |           |                     |          |        |
| WAVELENGTHS APAKT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WAVELI                                                     |                                                               |                     |                    |                    |            |         |           |                     |          |        |

| STRUCTURE IMPEDANCE LOADING |                |                 |                         |                    |                    |                      |                          |                          |                |            |
|-----------------------------|----------------|-----------------|-------------------------|--------------------|--------------------|----------------------|--------------------------|--------------------------|----------------|------------|
|                             |                |                 |                         | THIS               | STRUCT             | URE IS NOT           | LOADED                   |                          |                |            |
|                             |                |                 |                         |                    |                    |                      |                          |                          |                |            |
|                             |                |                 |                         | A                  | NTENNA E           | INVIRONME            | NT                       |                          |                |            |
|                             |                |                 |                         |                    | FREE               | SPACE                |                          |                          |                |            |
|                             |                |                 |                         |                    |                    |                      |                          |                          |                |            |
|                             |                |                 |                         | MA'                | FRIX TIMI          | NG                   |                          |                          |                |            |
|                             |                |                 | FILL=                   | 0.000              | SEC., FA           | CTOR= 0.             | 000 SEC.                 |                          |                |            |
|                             |                |                 |                         |                    | ,                  |                      |                          |                          |                |            |
|                             |                |                 |                         |                    | ANT                | 'ENNA INPU           | T PARAMET                | ERS                      |                |            |
| TAG                         | SI             |                 | VOLTACI                 | F (VOLT            | 3)                 | CURREN               | T (AMPS)                 | IM                       | PFDAN          | TF (OHMS)  |
| ADMITT                      | FANCI          | E (MHOS         | ) P(                    | DWER               | 5)                 | COMMEN               | I (AMI 5)                | 11/1                     |                |            |
| NO.<br>IMAG.                | NO.<br>(W      | . REA<br>/ATTS) | L                       | IMAG.              | REA                | L IM                 | AG. I                    | (EAL                     | IMAG.          | REAL       |
| 1<br>1.01465I               | E-02-4         | 7<br>.06074E-0  | $1.00000 \\ 03\ 5.0732$ | E+00 0<br>7E-03    | .00000E+00         | 1.01465E             | 02-4.06074E              | -03 8.49497              | E+01 3         | .39977E+01 |
|                             |                |                 |                         |                    |                    |                      |                          |                          |                |            |
|                             |                |                 |                         | CURRI              | ENTS AND           | LOCATION -           |                          |                          |                |            |
|                             |                |                 |                         | DIGTA              | NCESINU            | WAVELENCT            | пс                       |                          |                |            |
|                             |                |                 |                         | DISTA              | NCES IN V          | VAVELENGI            | по                       |                          |                |            |
| SEG.                        | TAG            | COO             | RD. OF S                | EG. CEN'           | TER S              | EG.                  | CURI                     | RENT (AMPS)              |                |            |
| NO.<br>1                    | NO.<br>1       | X<br>0.0000     | Y<br>0.0000             | Z<br>-0.2308       | LENG<br>0.03847    | TH REA<br>1.5606E-03 | L IM<br>8.7805E-04       | AG. MA<br>1.7906E-03     | AG.<br>-29.364 | PHASE      |
| 2                           | 1              | 0.0000          | 0.0000                  | -0.1924            | 0.03847            | 4.0238E-03 -         | 2.1901E-03               | 4.5812E-03               | -28.559        |            |
| 3                           | 1              | 0.0000          | 0.0000                  | -0.1539            | 0.03847            | 6.0983E-03 -         | 3.1948E-03               | 6.8844E-03               | -27.649        |            |
| 4<br>5                      | 1              | 0.0000          | 0.0000                  | -0.1154<br>-0.0769 | 0.03847<br>0.03847 | 9.0859E-03 -         | 3.9094E-03<br>4 3005E-03 | 8.7312E-03<br>1.0052E-02 | -26.599        |            |
| 6                           | 1              | 0.0000          | 0.0000                  | -0.0385            | 0.03847            | 9.8782E-03 -         | 4.3240E-03               | 1.0783E-02               | -23.640        |            |
| 7                           | 1              | 0.0000          | 0.0000                  | 0.0000             | 0.03847            | 1.0147E-02           | 4.0607E-03               | 1.0929E-02               | -21.812        |            |
| 8                           | 1              | 0.0000          | 0.0000                  | 0.0385             | 0.03847            | 9.8782E-03           | 4.3240E-03               | $1.0783 \text{E}{-}02$   | -23.640        |            |
| 9                           | 1              | 0.0000          | 0.0000                  | 0.0769             | 0.03847            | 9.0859E-03           | -4.3005E-03              | 1.0052E-02               | -25.329        |            |
| 10                          | 1              | 0.0000          | 0.0000                  | 0.1154             | 0.03847<br>0.03847 | 7.8071E-03           | -3.9094E-03              | 8.7312E-03<br>6.8844E-03 | -26.599        |            |
| 12                          | 1              | 0.0000          | 0.0000                  | 0.1935<br>0.1924   | 0.03847<br>0.03847 | 4 0238E-03           | -2 1901E-03              | 4 5812E-03               | -28 559        |            |
| 13                          | 1              | 0.0000          | 0.0000                  | 0.2308             | 0.03847            | 1.5606E-03           | -8.7805E-04              | 1.7906E-03               | -29.364        |            |
| 14                          | 2              | 0.5001          | 0.0000                  | -0.2308            | 0.03847            | 6.3631E-04           | 9.5841E-05               | 6.4348E-04               | 8.566          |            |
| 15                          | 2              | 0.5001          | 0.0000                  | -0.1924            | 0.03847            | 1.6382E-03           | $2.4562 \text{E}{-}04$   | $1.6565 \text{E}{-}03$   | 8.527          |            |
| 16                          | 2              | 0.5001          | 0.0000                  | -0.1539            | 0.03847            | 2.4799 E- 03         | 3.7050E-04               | $2.5074 \text{E}{-}03$   | 8.497          |            |
| 17                          | 2              | 0.5001          | 0.0000                  | -0.1154            | 0.03847            | 3.1720E-03           | 4.7269E-04               | 3.2070E-03               | 8.476          |            |
| 18                          | 2              | 0.5001          | 0.0000                  | -0.0769            | 0.03847            | 3.6893E-03           | 5.4882E-04               | 3.7299E-03               | 8.461          |            |
| 19                          | 2              | 0.5001          | 0.0000                  | -0.0385            | 0.03847            | 4.0094E-03           | 5.9585E-04               | 4.0535E-03               | 8.453          |            |
| 20                          | 2              | 0.5001          | 0.0000                  | 0.0000             | 0.03847<br>0.03847 | 4.1179E 03           | 5 9585E-04               | 4.1051E-03               | 8 453          |            |
| 22                          | $\frac{1}{2}$  | 0.5001          | 0.0000                  | 0.0769             | 0.03847            | 3.6893E-03           | 5.4882E-04               | 3.7299E-03               | 8.461          |            |
| 23                          | $\overline{2}$ | 0.5001          | 0.0000                  | 0.1154             | 0.03847            | 3.1720E-03           | 4.7269E-04               | 3.2070E-03               | 8.476          |            |
| 24                          | <b>2</b>       | 0.5001          | 0.0000                  | 0.1539             | 0.03847            | 2.4799E-03           | 3.7050E-04               | 2.5074E-03               | 8.497          |            |
| 25                          | <b>2</b>       | 0.5001          | 0.0000                  | 0.1924             | 0.03847            | 1.6382E-03           | $2.4562 \pm 04$          | 1.6565 E-03              | 8.527          |            |
| 26                          | <b>2</b>       | 0.5001          | 0.0000                  | 0.2308             | 0.03847            | 6.3631E-04           | 9.5841E-05               | 6.4348E-04               | 8.566          |            |
|                             |                |                 |                         |                    |                    |                      |                          |                          |                |            |
|                             |                |                 |                         |                    |                    |                      |                          |                          |                |            |
|                             |                |                 |                         |                    | POWF               | R BUDGET -           |                          |                          |                |            |
|                             |                |                 |                         |                    | 1000               | TIDOLOGI T           |                          |                          |                |            |

3.2.2 ポート2にZ<sub>L</sub>を付加した場合のポート1の入力インピーダンス 【上のZ行列より】

 $\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \text{ and } V_2 = -Z_L I_2 \quad ( 負号は電流の向きの定義の違いによる)$ 

$$\begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ V_2 = Z_{21}I_1 + Z_{22}I_2 , \\ V_2 = -Z_LI_2 \end{cases}, \begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ -Z_LI_2 = Z_{21}I_1 + Z_{22}I_2 \end{cases}, \begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ -Z_LI_2 = Z_{21}I_1 + Z_{22}I_2 \end{cases}, \\ I_2 = -\frac{Z_{21}}{Z_L + Z_{22}}I_1 \end{cases}, V_1 = Z_{11}I_1 - \frac{Z_{12}Z_{21}}{Z_L + Z_{22}}I_1 \end{cases}$$
$$Z_{in} = \frac{V_1}{I_1} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_L + Z_{22}}$$
$$Z_L = -j50 \ \text{O} \ \text{Best{abs}}, \\ Z_{in} \cong 93.2 + j34.2 \end{cases}$$

【NEC2の入力ファイル (Port2 に集中定数素子Z = -j50を接続)】

| CM DIPOLE ANTENNA                                                                      |
|----------------------------------------------------------------------------------------|
| CE                                                                                     |
| GW 1 13 0 0 -0.0306 0 0 0.0306 .000122                                                 |
| $\mathrm{GW}\; 2\; 13\; 0.0612\; 0\; \textbf{-}0.0306\; 0.0612\; 0\; 0.0306\; .000122$ |
| GE                                                                                     |
| LD 4 2 7 7 050.                                                                        |
| FR 0 1 0 0 2450. 100.                                                                  |
| EX 0 1 7 1 1.0 0.0                                                                     |
| XQ                                                                                     |
| RP 0 1 1 0000 90. 0. 1. 1.                                                             |
| EN                                                                                     |

上記ファイルを実行すると、

 $Z_{in} \cong 93.3 + j34.2$ 

と、アンテナ系等価回路モデル表現での計算と同様の結果が得られる。

#### 3.2.3 ポートに集中定数素子を接続した場合の消費電力

CM DIPOLE ANTENNA CE GW 1 13 0 0 -0.0306 0 0 0.0306 .000122 GW 2 13 0.0612 0 -0.0306 0.0612 0 0.0306 .000122 GE LD 4 2 7 7 50. -50. FR 0 1 0 0 2450. 100. EX 0 1 7 1 1.0 0.0 XQ RP 0 1 1 0000 90. 0. 1. 1. EN

ポート2に $Z_L = 50 + j50$ を接続すると、NEC2の出力ファイルでは

|                          | ···· CURRENTS AND LOCATION · · · |          |                |               |                |                |            |                      |         |       |
|--------------------------|----------------------------------|----------|----------------|---------------|----------------|----------------|------------|----------------------|---------|-------|
| DISTANCES IN WAVELENGTHS |                                  |          |                |               |                |                |            |                      |         |       |
| SEG.<br>NO.              | TAG<br>NO.                       | COO<br>X | RD. OF SI<br>Y | EG. CENT<br>Z | FER SI<br>LENG | EG.<br>TH REAI | CURR       | ENT (AMPS)<br>AG. MA | <br>.G. | PHASE |
| 20                       | 2                                | 0.5001   | 0.0000         | 0.0000        | 0.03847        | 2.2379E-03     | 1.6879E-03 | 2.8030E-03           | 37.025  |       |

| <br>- POWER BUDGET                                   |
|------------------------------------------------------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$ |
|                                                      |

が得られる。100%-95.79%=4.21%が $Z_L$ で消費されている。 この値は電気回路学の消費電力 $\frac{\operatorname{Re}[Z|I|^2]}{2}$ の計算値と一致している。

#### 参考文献

[1] モーメント法入門

http://www-antenna.ee.titech.ac.jp/~hira/hobby/edu/em/mom/mom2/index-j.html

- [2] J.L. Volakis et al., Finite Element Method for Electromagnetics, IEEE Press, p.160, NY, 1998.
- [3] http://www.nec2.org/

## 付録

#### A HFSS でのインピーダンス行列の計算方法

HFSS は電界ベースの有限要素法解析[2]を行うので、次のヘルムホルツの波動方程式を解いている。

$$\nabla \times \left(\frac{\nabla \times \mathbf{E}}{\mu_r}\right) - k_0^2 \varepsilon_r \mathbf{E} = -jk_0 \eta_0 \mathbf{i}_e - \nabla \times \left(\frac{\mathbf{i}_m}{\mu_r}\right)$$
(A-1)

これからは筆者の予想も含まれるから、正確でないかもしれないが、解析は次の順に行われているはずである。

1)集中定数的ポートに表面インピーダンス $Z_s = Z_0 \frac{w}{\ell}$ (ユーザーが任意の値を指定)を 与える。これは集中定数的ポートの内部インピーダンスをシミュレートするためのも のである。

$$\mathbf{E}_{t} = Z_{s} \hat{\mathbf{n}} \times \mathbf{H}_{t}$$

HFSS では下記の並列 R,L,C の値を設定する。

$$Y_{0} = \frac{1}{Z_{0}} = \frac{1}{R} + j\omega C + \frac{1}{j\omega L}$$

$$\begin{cases} \int_{\Gamma_{\ell}} \mathbf{E}_{t} \cdot d\mathbf{l}_{\ell} = V \\ \int_{\Gamma_{w}} (\hat{\mathbf{n}} \times \mathbf{H}_{t}) \cdot (\underline{-\hat{\mathbf{n}}} \times d\mathbf{l}_{w}) = I \\ \Rightarrow \begin{cases} \iint_{S} \mathbf{E}_{t} \cdot \hat{\mathbf{l}}_{\ell} dS = V \int_{\Gamma_{w}} d\ell_{w} \\ \iint_{S} (\hat{\mathbf{n}} \times \mathbf{H}_{t}) \cdot \hat{\mathbf{l}}_{\ell} dS = I \int_{\Gamma_{\ell}} d\ell_{\ell} \end{cases}$$

$$V = Z_{0}I$$



$$\frac{\iint_{S} \mathbf{E}_{t} \cdot \hat{\mathbf{l}}_{\ell} dS}{\int_{\Gamma_{w}} d\ell_{w}} = Z \frac{\iint_{S} (\hat{\mathbf{n}} \times \mathbf{H}_{t}) \cdot \hat{\mathbf{l}}_{\ell} dS}{\int_{\Gamma_{\ell}} d\ell_{\ell}}$$
$$\mathbf{E}_{t} = Z_{0} \frac{\int_{\Gamma_{w}} d\ell_{w}}{\int_{\Gamma_{\ell}} d\ell_{\ell}} \hat{\mathbf{n}} \times \mathbf{H}_{t}$$

上式を $\mathbf{E}_{t} = \mathbf{Z}_{s} \hat{\mathbf{n}} \times \mathbf{H}_{t}$ と比較すると次の関係が得られる。

$$Z_s = Z_0 \frac{w}{\ell}$$

- 2) 励振電流源 $\mathbf{i}_{e}$ (または磁流源 $\mathbf{i}_{m}$ )を与える。
- 3) 電磁界解析を実行する。

4) 電磁界解析結果の電界より、集中定数的ポートの電圧 $\int_{\Gamma_{\ell}} \mathbf{E}_{t} \cdot d\mathbf{l}_{\ell} = V$ が計算できる。

5)励振電流より、集中定数的ポートへの印加電流  $\int_{\Gamma_w} \mathbf{i}_e \cdot (\underline{-\hat{\mathbf{n}} \times d\mathbf{l}_w}) = I_0$  が計算できる。

【補足】  
電磁界解析結果の磁界による電流値  
$$\int_{\Gamma_w} (\hat{\mathbf{n}} \times \mathbf{H}_1) \cdot (-\hat{\mathbf{n}} \times d\mathbf{I}_w) = I は一般には I_0 とは= $\hat{I}_\ell$   
異なる。なぜならば、右図のように集中定数ポ  
ートの外部インピーダンスの違いにより、集中  
定数ポートの内部インピーダンスにも電流が  
流れ、 $I_0 \ge Y_0$ に流れる電流の和が $I$ になるか  
らである。$$



6) 4の*V* および5の $I_0$ から、自己アドミタンス $Y_{11} = Y_0 + Y = \frac{I_0}{V}$ が計算できる。もちろ

ん複数ポートの場合も同様にして相互アドミンタンスも計算できる。つまり Y 行列の 計算ができる。Z 行列は Y 行列の逆行列で計算できる。

【補足(内部インピーダンス値を変更する)】 各ポートiで次式が成り立つ。

$$\begin{cases} V'_{i} = V_{i} + Z_{0i}I'_{i} \\ I'_{i} = I_{i} \end{cases}$$
$$\{V\} = [Z]\{I\} \\ \{V'\} - \operatorname{diag}[Z_{0i}]\{I'\} = [Z]\{I'\} \end{cases}$$



$$\{V'\} = \underbrace{\llbracket Z \end{bmatrix} + \operatorname{diag}[Z_{0i}]}_{=[Z']} \{I'\}$$

このように対角要素にそのポートの内部インピーダンスを加算するのみで各ポート の内部インピーダンスの変更は可能である。

7) S パラメータを計算したいときは、

$$S_{11} = \frac{Z - Z_0}{Z + Z_0}$$

で反射係数を計算できる。集中定数的ポートには内部インピーダンスを指定しないと $(Z_0 = 0 \pm k \ge 2)$ 常に全反射になってしまうので、この意味で集中定数的ポートには内部インピーダンスを定義している。

一般のNポートでは、付録BのようにZ行列⇔S行列の変換が可能である。

#### BZ行列⇔S行列の変換

*V,Iと a,b*の間には次の関係がある。

$$\begin{cases} \mathbf{V} = \operatorname{diag}(\sqrt{Z_i})(\mathbf{a} + \mathbf{b}) \\ \mathbf{I} = \operatorname{diag}(1/\sqrt{Z_i})(\mathbf{a} - \mathbf{b}) \end{cases} \Rightarrow \begin{cases} \mathbf{a} = \frac{\operatorname{diag}(1/\sqrt{Z_i})\mathbf{V} + \operatorname{diag}(\sqrt{Z_i})\mathbf{I}}{2} \\ \mathbf{b} = \frac{\operatorname{diag}(1/\sqrt{Z_i})\mathbf{V} - \operatorname{diag}(\sqrt{Z_i})\mathbf{I}}{2} \end{cases}$$
(B-1)

ここで、 $\operatorname{diag}(1/\sqrt{Z_i})\operatorname{diag}(\sqrt{Z_i}) = U$ (単位行列)である。

式(B-1)より、

$$\begin{cases} \mathbf{a} = \frac{D^{-1}\mathbf{V} + D\mathbf{I}}{2} \\ \mathbf{b} = \frac{D^{-1}\mathbf{V} - D\mathbf{I}}{2} \end{cases}$$

ここで、
$$D = \operatorname{diag}(\sqrt{Z_1}, \sqrt{Z_2}, \cdots, \sqrt{Z_n})$$

$$\frac{D^{-1}\mathbf{V} - D\mathbf{I}}{2} = S\left[\frac{D^{-1}\mathbf{V} + D\mathbf{I}}{2}\right]$$

$$D^{-1}\mathbf{V} - D\mathbf{I} = S\left(D^{-1}\mathbf{V} + D\mathbf{I}\right)$$

$$D^{-1}\mathbf{V} - D\mathbf{I} = SD^{-1}\mathbf{V} + SD\mathbf{I}$$

$$D^{-1}\mathbf{V} - SD^{-1}\mathbf{V} = D\mathbf{I} + SD\mathbf{I}$$

$$(U \ \cdot \mathbf{E} \ \mathbf{E} \ \cdot \cdot$$

$$(U-S)D^{-1}\mathbf{V} = (U+S)D\mathbf{I}$$
  

$$\mathbf{V} = ((U-S)D^{-1})^{-1}(U+S)D\mathbf{I}$$
  

$$\mathbf{V} = D(U-S)^{-1}(U+S)D\mathbf{I}$$
  
たので、 
$$\mathbf{V} = Z\mathbf{I} \succeq 比較して$$
  

$$Z = D(U-S)^{-1}(U+S)D$$
  

$$= \operatorname{diag}(\sqrt{Z_1}, \sqrt{Z_2}, \cdots, \sqrt{Z_n})(U-S)^{-1}(U+S)\operatorname{diag}(\sqrt{Z_1}, \sqrt{Z_2}, \cdots, \sqrt{Z_n})$$
  

$$\Box \equiv \mathbb{C} \subset \mathbb{C}, \quad Z_1 = Z_2 = \cdots = Z_n = Z_0 \ \mathcal{O} \succeq \gtrless l \ddagger, \quad Z = (U-S)^{-1}(U+S)Z_0$$

$$C = C, \quad Z_1 = Z_2 = \dots = Z_n = Z_0 \quad 0 \geq \exists \{z, Z = (U-S) \mid (U+S) \}$$

$$Z = D(U - S)^{-1}(U + S)D を S について解くと、$$
  

$$(U - S)D^{-1}Z = (U + S)D$$
  

$$D^{-1}Z - SD^{-1}Z = D + SD$$
  

$$D^{-1}Z - D = SD^{-1}Z + SD$$
  

$$D^{-1}Z - D = S(D^{-1}Z + D)$$
  

$$S = (D^{-1}Z - D)(D^{-1}Z + D)^{-1}$$
  

$$= D^{-1}(Z - D^{2})(D^{-1}(Z + D^{2}))^{-1}$$
  

$$= D^{-1}(Z - D^{2})(Z + D^{2})^{-1}D$$
  

$$\Box \Box \heartsuit, \ Z_{1} = Z_{2} = \dots = Z_{n} = Z_{0} \oslash \flat \doteqdot it, \ S = (Z - Z_{0}U)(Z + Z_{0}U)^{-1}$$

 $Z \Rightarrow S$  $\overline{Z \rightarrow S}$ は、ポート*i*にインピーダンス $Z_i$ を接続すると、  $\mathbf{V} = Z\mathbf{I}$ 式(B-1)より、

 $\begin{cases} \mathbf{V} = D(\mathbf{a} + \mathbf{b}) \\ \mathbf{I} = D^{-1}(\mathbf{a} - \mathbf{b}) \end{cases}$  $\Box \Box \mho, D = \operatorname{diag}(\sqrt{Z_1}, \sqrt{Z_2}, \dots, \sqrt{Z_n})$  $D(\mathbf{a} + \mathbf{b}) = Z[D^{-1}(\mathbf{a} - \mathbf{b})]$  $D\mathbf{a} + D\mathbf{b} = ZD^{-1}\mathbf{a} - ZD^{-1}\mathbf{b}$  $ZD^{-1}\mathbf{b} + D\mathbf{b} = ZD^{-1}\mathbf{a} - D\mathbf{a}$ 

$$S = (ZD^{-1} + D)^{-1}(ZD^{-1} - D) & Z \ i \subset \ \forall \lor \forall \in S \\ (ZD^{-1} + D)S = (ZD^{-1} - D) \\ ZD^{-1}S + DS = ZD^{-1} - D \\ ZD^{-1}S - ZD^{-1} = -D - DS \\ ZD^{-1}(S - U) = -D(S + U) \\ Z = -D(S + U)(D^{-1}(S - U))^{-1} \\ = -D(S + U)(S - U)^{-1}D$$

ここで、 $Z_1 = Z_2 = \dots = Z_n = Z_0 \mathcal{O}$ ときは、 $Z = Z_0 (S+U)(U-S)^{-1}$